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ABSTRACT: 
 
The application field of laserscanning (LiDAR) has undergone significant extension in the last years. As advancing airborne LiDAR 
technology continues to provide denser point clouds, its applicability broadens into important sectors, such as emergency mapping 
or transportation applications. This paper is a continuation of a research reported last year, focusing on modeling moving objects 
(vehicles) extracted from laserscanner data. 
Previously, we presented methods for extracting, modeling, and classifying laserscanned vehicles. Now we put emphasis on the 
refined modeling of the extracted vehicles. In our approach we approximate the shape of the vehicles with cubes as pre-defined 
geometric primitives. The more precise the shape approximation is, the more accurate the volume of the object can be determined. 
Several tests with LiDAR data sets of different characteristics (frequency, point density) have been carried out. In this paper a 
modeling technique is described considering different point densities. 
The derived shapes and volumes of the vehicles are the bases of several transportation applications. Regarding the load of the road 
pavement, the higher volume indicates higher weight. Considering the environmental issues, the size of a vehicle is in strong 
correlation with its emission. The previously developed profile-based classification can be further enhanced with the refined shapes 
resulted from the current modeling technique. 
 
 

                                                                 

2.1 

*  Corresponding author 

1. INTRODUCTION 

As the state-of-the-art airborne LiDAR systems provides even 
denser and more accurate spatial data sets, new fields, such as 
transportation applications open to this capable mapping 
technology. Not only the most obvious road network detection 
but even traffic flow data estimation, vehicle classification 
seem achievable goals using data acquired by LiDAR sensors.  
Our previous works focused on vehicle classification; details 
about the PCA-based approach can be found in (Toth et al. 
2003a nad 2003b), about the model-based solution in (Lovas et 
al. 2004a and 2004b). Our results proved that vehicles extracted 
from airborne laserscanned data sets with moderate point 
density (1.5 points/m2) can be classified into coarse categories, 
such as passenger cars, multi-purpose vehicles and trucks. The 
model-based approach enables to distinguish even finer 
subclasses; e.g. differentiate the hatchbacks from the sedans in 
the passenger car category. In the model-based phase the results 
have been validated applying terrestrial laserscanned sample 
vehicles.  
In this paper we show a refined modeling procedure with voxel-
based vehicle reconstruction, which provides promising 
intermediate results in the field of classification. Moreover, 
applying sophisticated compressing techniques, the data 
management (from storage to representation) can be executed in 
an efficient way.  
 

2. VEHICLE RECONSTRUCTION 

Data Preparation 

By using LiDAR data in transportation applications, the initial 
step is always extracting vehicles from the data set. For road 
detection these features are simply erased, but obviously can be 
also used for further investigations in traffic flow data 
estimation. Because of the modest point density of our test data 
sets (1.5-2.4 points/m2), the shape of the extracted objects 
(vehicles) are fuzzy, as are the derived covering curves. As it 
shown in Figure 1, we have chosen an eighteen-wheeler truck 
for the better visualization. 
 

 
Figure 1.  Vehicle (truck) from LiDAR dataset 

 
Although for the performed tests the vehicles were cut 
manually, we have developed effective segmentation algorithms 
for extracting objects from LiDAR data sets; further details can 
be found in (Rakusz et al., 2004). 
 
 
 
 
 



 

 
Figure 2.  Interpolated vehicle points (0.1 m grid size) 

 
 
2.2 

2.3 

Interpolation 

Our primary goal is to represent the laserscanned vehicles with 
geometric primitives (with cubes). This approach needs to be 
based on regularly interpolated grid structure. The gap between 
the grid points are to be depend on the overall point density, 
and on the demanded surface smoothness. The test vehicle is 
extracted from a 1.5 points/m2 point cloud; about 60 points 
reflected back from the elongated (from 20 m actual length to 
29 m in data set) truck. We interpolated the elevation data to 
0.1 m spaced grid applying linear interpolation (Figure 2.). 
 

Oct-tree decomposition 

Since the key idea of our approach is to build up the extracted 
objects with easily definable objects, we have chosen the 
simplest solution, and used voxels as basic elements in the 
reconstruction. Voxel cubes can be divided into further cubes; 
so can a “super-voxel” be built up by aggregating unit voxels. 
(Figure 3) 
 

 
a) Oct-tree for hierarchical 

voxel decomposition  

 
b) The first subdivision of the 

"Big cube" 
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c) Numbering of the oct-tree elements 
Figure 3. The oct-tree structure 

 

Representing objects with the biggest possible voxels (i.e. the 
homogenous volumes are filled with appropriately sized cubes) 
has the advantage of an efficient data compression. As the 
quad-tree at the pixels divides one rectangle to four elements; 
the oct-tree at the voxels results in 8 sub-voxels. Figure 4 shows 
the graph representation of the oct-tree decomposition.  
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Figure 4. Oct-tree representation as graph structure 

 
This data structure results in an efficient data storage capacity. 
The voxels are structured in voxel pyramid with sparse logical 
3D arrays as elements. In the sparse array only the non-zero 
elements (voxels belonging to object; i.e. vehicle) are stored, 
which elements are logical “true”. This binary array ensures the 
efficient storage solution, and fast computing process. The 
decision process is described in the following equations: 
 
If the following condition is fullfilled for a voxel with its initial 
coordinates of i ,j ,k at level q: 
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where 
∧  is the logical AND operator for vector input.



 

  

  
Figure 4. Iterative refinement in truck visualization (modelling) using the voxel pyramid structure 

 
 

2.4 Voxel-based modeling  

The effective oct-tree partition enables approximating the 
volume of the objects. First, the maximal voxel size is to be 
defined, then the number of the sub-structures (or the minimum 
voxel-size). In case of the eighteen-wheeler shown above, the 
maximum voxel size is 16×16×16 units (1 unit = grid size; now: 
0.1m) and has 5 sub-layers (minimum voxel size: 1×1×1) 
(Figure 4.). The size of the truck in the data set is 30 m (l) × 
2.5 m (w) × 4.6 m (h), thus the voxel composiotion for the 
minimum closing box is 300 × 25 × 46 voxels. Table 1 shows 
the progressivity of the oct-tree levels for 6 layers. 
 

Level Unit size in voxels No. of elements 
I 1×1×1 1 (80) 
II 2×2×2 8 (81) 
III 4×4×4 64 (82) 
IV 8×8×8 512 (83) 
V 16×16×16 4096 (84) 

Table 1. Progressivity of the oct-tree levels 
 
300 729 voxels are needed to fill the complete volume of the 
vehicle, based on the interpolated covering surface. Applying 
the oct-tree divided layers, 22 892 voxels represent the whole 
volume, which means 7.61%! Regarding the processing speed, 
the complete modelling process takes less than a minute in an 
ordinary office PC (Table 2). 
 
 
 
 
 

Layer No. of voxels Compression 
rate* [%] 

Processing 
time [s] 

1 300 729 100.00 3.67 
2 53 300 17.72 10.69 
3 26 056 8.66 11.72 
4 23 088 7.68 11.86 
5 22 892 7.61 12.01 

Table 2. Compression rates and processing times 
 

3. CONCLUSIONS 

The discussed modelling method can be used for several 
transportation purposes. For sophisticated traffic flow analysis, 
transportation management needs additional information about 
the vehicles travelling on the roads. One important issue is the 
vehicle classification; LiDAR provides high accuracy elevation 
data, which – as our previous research works proved – enables 
coarse vehicle categorization even with modest point density. 
As a continuation, instead of modelling vehicles with discrete 
points or the envelope curve (what we did in our previous 
research), the voxel-based object reconstruction provides an 
effective solution for modelling the complete volume of an 
object. Therefore the size of every vehicle sections (depending 
on the desired resolution) can be computed. Based on these 
sections the vehicle types can be distinguished; our prior studies 
showed that among others, the major difference for example 
between a passenger car and an MPV can be found in the 
shape/size of the back of the vehicle. 
 
 

                                                                 
*  with the meaning of: no. of hierarchical voxels compared to 

the whole voxel amount 
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